Benefits of the induced polarization geoelectric method to hydrocarbon exploration

Author:

Veeken Paul C.123,Legeydo Peter J.123,Davidenko Yuri A.123,Kudryavceva Elena O.123,Ivanov Sergei A.123,Chuvaev Anton123

Affiliation:

1. Wintershall Russia, Moscow, Russia. .

2. SGRDC Llc, Irkutsk, Russia. .

3. Lukbeloil Ltd, Saratov, Russia. .

Abstract

Delineation of hydrocarbon prospective areas is an important issue in petroleum exploration. The geoelectric method helps to identify attractive areas and reduces the overall drilling risk. For this purpose, induced polarization (IP) effects are mapped caused by the presence of epigenetic pyrite microcrystals in sedimentary rocks. These crystals occur in a shallow halo-shaped mineralogical alteration zone, often overlying a deeper-seated hydrocarbon accumulation. Local enrichment in pyrite results from reducing geochemical conditions below an impermeable layer. The imperfect top seal of the accumulation permits minor amounts of hydrocarbons to escape and migrate through the overlying rocks to shallower levels. During migration, hydro-carbons encounter an impermeable barrier, forming an altera-tion zone. Induced polarization logging and coring in wells confirm this working model. Geoelectric surveying visual-izes anomalies in electric potential difference measured be-tween receiver electrodes. The differentially normalized method (DNME) inverts the registered decay in potential differences, establishing a depth model constrained by seismic and petro-physical data. Diagnostic geoelectric attributes are proposed, giving a better grip on chargeability and resistivity distribution. Acquisition and processing parameters are adjusted to the target depth. Encouraging results are obtained in deeper [Formula: see text] as well as in very shallow water. Onshore, a grounded current transmitter is used. Geoelectric surveys cover different geologic settings with varying target depths. The success ratio for predicting hydrocarbon occurrences is high. So far, 40 successful wells have been drilled in Russia on mapped geoelectric anomalies. Out of 126 wells, the method produced satisfactory results in all but two cases. The technique reduces the risk attached to new hydrocarbon prospects and allows better ranking at a reasonable cost.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3