Beamlet migration using local cosine basis

Author:

Wu Ru-Shan123,Wang Yongzhong123,Luo Mingqiu123

Affiliation:

1. University of California, Santa Cruz, Institute of Geophysics and Planetary Physics, Modeling and Imaging Laboratory, Santa Cruz, California, U.S.A.

2. Formerly Geophysical Development Corp., Houston, Texas, U.S.A.; presently Geokinetics Processing, Inc., Houston, Texas, U.S.A. .

3. Screen Imaging Tech., Inc. (SITI), Sugar Land, Texas, U.S.A. .

Abstract

We have developed the theoretical foundation and technical details of a migration method using a local-cosine-bases (LCB) beamlet propagator. A beamlet propagator for heterogeneous media based on local perturbation theory is derived, and a fast implementation method is constructed. The use of local background velocities and local perturbations results in a two-scale decomposition of beamlet propagators: a background propagator for large-scale structures and a local phase-screen correction for small-scale local perturbations. Because of its locally adaptive nature, the beamlet propagator can handle strong lateral velocity variations with improved accuracy. For high-efficiency migration, we use a table-driven method and apply some techniques of sparse matrix operations. Compared with the Fourier finite-dif-ference and generalized screen propagator methods, the image quality and computational efficiency are similar. In some cases, we see fewer migration artifacts around and inside salt bodies with our method. We attribute this to the better high-angle accuracy of beamlet propagators in strong-contrast media. Numerical tests using synthetic data sets of the SEG-EAGE 2D salt model, Marmousi model, and Sigsbee 2A model demonstrate its high accuracy and reasonable efficiency. Another special feature of LCB beamlet migration is the availability of information in the local wavenumber domain during migration, which can be used to correct acquisition aperture effect and for other processing. Compared to beamlet migration using the Gabor-Daubechies frame (GDF) propagator, LCB migration is much more efficient because LCB is an orthonormal basis, whereas GDF has redundancy (usually greater than two) in the decomposition.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3