Signal/noise separation and velocity estimation

Author:

Harlan William S.1,Claerbout Jon F.1,Rocca Fabio2

Affiliation:

1. Department of Geophysics, Stanford University, Stanford, CA 94305

2. Dept. of Electronics, Politecnico, 20131 Milano, Italy

Abstract

A signal/noise separation must recognize the lateral coherence of geologic events and their statistical predictability before extracting those components most useful for a particular process, such as velocity analysis. Events with recognizable coherence we call signal; the rest we term noise. Let us define “focusing” as increasing the statistical independence of samples with some invertible, linear transform L. By the central limit theorem, focused signal must become more non‐Gaussian; the same L must defocus noise and make it more Gaussian. A measure F defined from cross entropy measures non‐Gaussianity from local histograms of an array, and thereby measures focusing. Local histograms of the transformed data and of transformed, artificially incoherent data provide enough information to estimate the amplitude distributions of transformed signal and noise; errors only increase the estimate of noise. These distributions allow the recognition and extraction of samples containing the highest percentage of signal. Estimating signal and noise iteratively improves the extractions of each. After the removal of bed reflections and noise, F will determine the best migration velocity for the remaining diffractions. Slant stacks map lines to points, greatly concentrating continuous reflections. We extract samples containing the highest concentration of this signal, invert, and subtract from the data, leaving diffractions and noise. Next, we migrate with many velocities, extract focused events, and invert. Then we find the least‐squares sum of these events best resembling the diffractions in the original data. Migration of these diffractions maximizes F at the best velocity. We successfully extract diffractions and estimate velocities for a window of data containing a growth fault. A spatially variable least‐squares superposition allows spatially variable velocity estimates. Local slant stacks allow a laterally adaptable extraction of locally linear events. For a stacked section we successfully extract weak signal with highly variable coherency from behind strong Gaussian noise. Unlike normal moveout (NMO), wave‐equation migration of a few common midpoint (CMP) gathers can image the skewed hyperbolas of dipping reflectors correctly. Short local slant stacks along midpoint will extract reflections with different dips. A simple Stolt (1978) (f-k) type algorithm migrates these dipping events with appropriate dispersion relations. This migration may then be used to extract events containing velocity information over offset. Offset truncations become another removable form of noise. One may remove non‐Gaussian noise from shot gathers by first removing the most identifiable signal, then estimating the samples containing the highest percentage of noise. Those samples containing a significant percentage of signal may be zeroed; what remains represents the most identifiable noise and may be subtracted from the original data. With this procedure we successfully remove ground roll and other noise from a shot (field) gather.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3