Quantification of modeling errors in airborne TEM caused by inaccurate system description

Author:

Christiansen Anders Vest123,Auken Esben123,Viezzoli Andrea123

Affiliation:

1. Geological Survey of Denmark and Greenland, Department of Groundwater and Quaternary Geology Mapping, Copenhagen, Denmark. .

2. Aarhus University, Department of Earth Sciences, Aarhus, Denmark. .

3. Aarhus Geophysics ApS, Aarhus, Denmark. .

Abstract

Being able to recover accurate and quantitative descriptions of the subsurface electrical conductivity structure from airborne electromagnetic data is becoming more and more crucial in many applications such as hydrogeophysical and environmental mapping, but also for mining exploration. The effect on the inverted models of inaccurate system description in the 1D forward modeling of helicopter time-domain electromagnetic (TEM) data was studied. The most important system parameters needed for accurate description of the subsurface conductivity were quantified using a nominal airborne TEM system and three different reference models to ensure the generality of the conclusions. By calculating forward responses, the effect of changing the system transfer function of the nominal airborne TEM system was studied in detail. The data were inverted and the consequences of inaccurate modeling of the system transfer function were studied inthe model space. Errors in the description of the transfer function influence the inverted model differently. The low-pass filters, current turn-off, and receiver-transmitter (Rx-Tx) timing issues primarily influenced the early time gates. The waveform repetition, gate integration, altitude, and geometry mainly influenced the late time gates. Depth of investigation is highly model dependent, but in general the early times hold information on the shallower parts of the model and the late times hold information on the deeper parts of the model. Amplitude, gain, and current variations affect the entire sounding and therefore the entire model. The results showed that all of these parameters should be measured and modeled accurately during inversion of airborne TEM data. If not, the output model can differ quite dramatically from the true model. Layer boundaries can be inaccurate by tens of meters, and layer resistivities by as much as an order of magnitude. In the worst cases, the measured data simply cannot be fitted within noise level.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3