Geoelectric experimental design — Efficient acquisition and exploitation of complete pole-bipole data sets

Author:

Blome Mark12,Maurer Hansruedi12,Greenhalgh Stewart12

Affiliation:

1. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, Germany. , .

2. ETH Zurich, Institute of Geophysics, Zurich, Switzerland. .

Abstract

Exploiting the information content offered by geoelectric data in an efficient manner requires careful selection of the electrode configurations to be used. This can be achieved using sequential experimental design techniques proposed over the past few years. However, these techniques become impractical when large-scale 2D or 3D experiments have to be designed. Even if sequential experimental design were applicable, acquisition of the resulting data sets would require an unreasonably large effort using traditional multielectrode arrays. We present a new, fully parallelized pole-bipole measuring strategy by which large amounts of data can be acquired swiftly. Furthermore, we introduce a new experimental design concept that is based on “complete” data sets in terms of linear independence. Complete data sets include a relatively small number of basis electrode configurations, from which any other configuration can be reconstructedby superposition. The totality of possible configurations is referred to as the comprehensive data set. We demonstrate the benefits of such reconstructions using eigenvalue analyses for the case of noise-free data. In the presence of realistic noise, such reconstructions lead to unstable results when only four-point (bipole-bipole) configurations are considered. In contrast, complete three-point (pole-bipole) data sets allow more stable reconstructions. Moreover, complete pole-bipole data sets can be acquired very efficiently with a fully parallelized system. Resolution properties of complete pole-bipole data sets are illustrated using both noise-free and noisy synthetic data sets. We also show results from a field survey performed over a buried waste disposal site, which further demonstrates the usefulness of our approach. Although this paper is restricted to 2D examples, it is trivial to extend the concept to 3D surveys, where the advantages of parallelized pole-bipole data acquisition become very significant.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference47 articles.

1. Optimal experiment design for time-lapse traveltime tomography

2. Oceanographic Experiment Design by Simulated Annealing

3. Blome, M., 2010, Efficient measurement and data inversion strategies for large scale geoelectric surveys: Ph.D. thesis, ETH Zurich.

4. Advances in three-dimensional geoelectric forward solver techniques

5. Near-Surface Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3