SEISMIC NOISE ESTIMATION USING HORIZONTAL COMPONENTS

Author:

Potter Thomas F.1,Roden Robert B.2

Affiliation:

1. Department of Mathematics, University of California, Berkeley, California

2. Science Services Division, Texas Instruments Incorporated, Dallas, Texas

Abstract

The use of seismometer arrays containing both horizontal‐ and vertical‐component instruments for attenuation of surface‐wave noise has been studied theoretically. If a process can be defined to estimate the vertical noise component by operating on the outputs of one or more horizontal‐component seismometers, the estimate may be subtracted from the vertical‐component record to improve signal‐to‐noise ratio. The exact waveforms of vertically‐incident signals must be preserved in an operation of this kind. Formulas are developed to describe the response of a system employing three components measured at a single point. This system is found to be useful only in cases where the noise is strongly directional. A physical separation between the vertical‐ and horizontal‐component instruments is necessary to resolve the difficulties caused by uncertainties in the sense of the propagation velocity vector and particle orbit vector. Formulas, derived for systems consisting of circular rings of radially‐oriented horizontals and a central vertical show, that useful noise rejection can be obtained even in the most unfavorable case of uniform azimuthal noise distribution. The performance of arrays of this kind is not affected very much by uncorrelated noise or Love‐wave noise. Comparisons with similar arrays containing only vertical‐component seismometers indicate that, for some of the noise models studied, the multicomponent array should provide useful noise rejection over a greater bandwidth and at longer wavelengths than an all‐vertical array with the same dimensions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3