A practical workflow using quantitative interpretation of seismic amplitudes to derisk infill wells in deepwater Gulf of Mexico: The Auger example

Author:

Sang Liqin1,Klein-Helmkamp Uwe2,Cook Andrew2,Jimenez Juan R.2

Affiliation:

1. Formerly Shell International Exploration and Production Inc., Houston, Texas, USA; presently Shell Exploration & Production Company, Houston, Texas, USA..

2. Shell Exploration & Production Company, Houston, Texas, USA..

Abstract

Seismic direct hydrocarbon indicators (DHIs) are routinely used in the identification of hydrocarbon reservoirs and in the positioning of drilling targets. Understanding seismic amplitude reliability and character, including amplitude variation with offset (AVO), is key to correct interpretation of the DHI and to enable confident assessment of the commercial viability of the reservoir targets. In many cases, our interpretation is impeded by limited availability of data that are often less than perfect. Here, we present a seismic quantitative interpretation (QI) workflow that made the best out of imperfect data and managed to successfully derisk a multiwell drilling campaign in the Auger and Andros basins in the deepwater Gulf of Mexico. Data challenges included azimuthal illumination effects caused by the presence of the Auger salt dome, sand thickness below tuning, and long-term production effects that are hard to quantify without dedicated time-lapse seismic. In addition, seismic vintages with varying acquisition geometries led to different QI predictions that further complicated the interpretation story. Given these challenges, we implemented an amplitude derisking workflow that combined ray-based illumination assessments and prestack data observations to guide selection of the optimal seismic data set(s) for QI analysis. This was followed by forward modeling to quantify the fluid saturation and sand thickness effects on seismic amplitude. Combined with structural geology analysis of the well targets, this workflow succeeded in significantly reducing the risk of the proposed opportunities. The work also highlighted potential pitfalls in AVO interpretation, including AVO inversion for the characterization of reservoirs near salt, while providing a workflow for prestack amplitude quality control prior to inversion. The workflow is adaptable to specific target conditions and can be executed in a time-efficient manner. It has been applied to multiple infill well opportunities, but for simplicity reasons here, we demonstrate the application on a single well target.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derisking and unlocking infill opportunities in the Auger and Andros Basins;SEG Technical Program Expanded Abstracts 2020;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3