Spectral balancing GPR data using time-variant bandwidth in the t-f domain

Author:

Economou Nikos1,Vafidis Antonis1

Affiliation:

1. Technical University of Crete, Mineral Resources Engineering Department, Laboratory of Applied Geophysics, Chania, Greece. .

Abstract

Ground-penetrating radar (GPR) sections encounter a resolution reduction with depth because, for electromagnetic (EM) waves propagating in the subsurface, attenuation is typically more pronounced at higher frequencies. To correct for these effects, we have applied a spectral balancing technique, using the S-transform (ST). This signal-processing technique avoids the drawbacks of inverse [Formula: see text] filtering techniques, namely, the need for estimation of the attenuation factor [Formula: see text] from the GPR section and instability caused by scattering effects that result from methods of dominant frequency-dependent estimation of [Formula: see text]. The method designs and applies a gain in the time-frequency ([Formula: see text]) domain and involves the selection of a time-variant bandwidth to reduce high-frequency noise. This method requires a reference amplitude spectrum for spectral shaping. It performs spectral balancing, which works efficiently for GPR data when it is applied in very narrow time windows. Furthermore, we have found that spectral balancing must be applied prior to deconvolution, instead of being an alternative technique.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3