Geophysical inversion versus machine learning in inverse problems

Author:

Kim Yuji1,Nakata Nori1

Affiliation:

1. The University of Oklahoma, ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, USA.

Abstract

Geophysical inversion and machine learning both provide solutions for inverse problems in which we estimate model parameters from observations. Geophysical inversions such as impedance inversion, amplitude-variation-with-offset inversion, and traveltime tomography are commonly used in the industry to yield physical properties from measured seismic data. Machine learning, a data-driven approach, has become popular during the past decades and is useful for solving such inverse problems. An advantage of machine learning methods is that they can be implemented without knowledge of physical equations or theories. The challenges of machine learning lie in acquiring enough training data and selecting relevant parameters, which are essential in obtaining a good quality model. In this study, we compare geophysical inversion and machine learning approaches in solving inverse problems and show similarities and differences of these approaches in a mathematical form and numerical tests. Both methods aid in solving ill-posed and nonlinear problems and use similar optimization techniques. We take reflectivity inversion as an example of the inverse problem. We apply geophysical inversion based on the least-squares method and artificial neural networks as a machine learning approach to solve reflectivity inversion using 2D synthetic data sets and 3D field data sets. A neural network with multiple hidden layers successfully generates the nonlinear mapping function to predict reflectivity. For this inverse problem, we test different L1 regularizers for both approaches. L1 regularization alleviates effects of noise in seismic traces and enhances sparsity, especially in the least-squares method. The 2D synthetic wedge model and field data examples show that neural networks yield high spatial resolution.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3