GEOPHYSICAL OPERATIONS IN THE NORTH SEA

Author:

Cook Ernest E.1

Affiliation:

1. Signal Oil and Gas Company, Los Angeles, California

Abstract

During the last three years the discovery of the world’s second largest natural gas field at Groningen in the Netherlands has touched off in the North Sea one of the greatest competitive offshore geophysical operations in history. Before 1962, only minor amounts of geophysical work had been done there. Severe weather conditions were expected, but seismic operations have not been as much affected by weather as was originally anticipated. However, strong currents, making cable location uncertain, hampered reflection stacking and refraction operations. Location by radio was also a serious problem due to lack of sufficient available frequencies for a lane identification system. Seismic work was carried out safely in areas mapped as mine fields. Few problems with the fishing industry have so far been encountered. As a preliminary, the geophysics of the Groningen area are discussed. A gravity compilation of the North Sea shows that there are three major basins—the Northwest German Zechstein Basin, the British North Sea Basin, and the Norwegian North Sea Basin. The British Basin which contains Tertiary, Cretaceous, Jurassic, Triassic, Permian, Carboniferous, and older sediments shows considerable salt movement with salt domes, walls, and pillows being in evidence to within 30 miles of the eastern coast of England. Some examples of seismic record sections show the quality of data and the kind of structures encountered. Water reverberations were satisfactorily reduced by means of anti‐ringing procedures. Multiple reflections were frequently observed and often interfered with or obscured simple reflections. Refraction studies indicate that two main refractors, the Upper Cretaceous Chalk and the Upper Magnesian Limestone of the Permian, are present over most of the British Basin. Mapping the key basal Permian reflector is made difficult by deterioration of the reflection under areas of salt growth. Stacking sometimes enhances this reflection. Also intrusions of Permian salt into the Mesozoic beds give rise to large and rapid changes in thickness of the overlying low‐velocity Tertiary and high‐velocity Cretaceous chalk sections. A correction system for these large lateral velocity changes is described.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3