URANIUM ASSAY LOGGING USING A PULSED 14‐MEV NEUTRON SOURCE AND DETECTION OF DELAYED FISSION NEUTRONS

Author:

Givens W. W.1,Mills W. R.1,Dennis C. L.1,Caldwell R. L.1

Affiliation:

1. Mobil R & D Corp., Dallas, Texas 75221

Abstract

An in‐situ uranium assay logging system has been developed that measures directly and quantitatively the uranium concentration in the formation surrounding a drill hole. System operation is based on the DFN (delayed fission neutron) method which involves (1) bombarding a formation with short duration bursts of neutrons from a pulsed‐neutron generator to induced fission in any uranium present; (2) separating delayed fission neutrons, from source and prompt fission neutrons, by waiting a few milliseconds after each neutron burst before activating the neutron counter system; (3) deactivating the neutron counter system before the beginning of the next neutron burst; and (4) repeating this bombard‐wait‐count cycle a sufficient number of times to accumulate a statistically acceptable number of the delayed neutron counts. The DFN logging method has been used routinely in our field operations for several years, and it has successfully overcome one of the most perplexing problems encountered in uranium exploration and production—that of radioactive disequilibrium. The need for coring and chemical assaying is virtually eliminated. The information provided by chemical assay of cores is made available by DFN assays on site and in minutes after the data are accumulated. The disequilibrium ratio is available to the field geologist immediately by comparing DFN assay ore grade to ore grade from a calibrated natural gamma‐ray log. A DFN uranium assay logging system is capable of 8 ft/minute continuous semiquantitative logs and stationary quantitative assays. Calibration procedures and a method for correcting DFN assays for variable formation parameters, such as porosity and macroscopic absorption cross‐section, have been developed. DFN logs, assays, and chemical assays of cores are in excellent agreement.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3