Self‐potential modeling from primary flows

Author:

Sill William R.1

Affiliation:

1. Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Abstract

This paper discusses a new method for the investigation of self potentials (SP) based on induced current sources. The induced current sources are due to divergences of the convection current which is driven, in turn, by a primary flow, either heat or fluid. As a result of using this approach there is a shift in emphasis toward the vector flow field and its interaction with current cross‐coupling structure when compared with the total potential approach of Nourbehecht (1963) which emphasized the primary flow potential and the voltage cross‐coupling. This shift in emphasis is advantageous because it is analogous to the actual physical processes. For example, fluid flow in the ground gives rise to drag (convection) currents, and the interaction of the convection currents with the electrical structure gives rise to the electrical potentials (SP). This simple physical picture should aid in developing a better intuitive understanding of the generation of SP effects. The convective current approach is easily adapted to numerical modeling techniques, as illustrated by its implementation using a two‐dimensional (2-D) transmission surface algorithm. When the primary flow is driven by the gradient of a potential, joint modeling of the primary flow and the resultant SP is possible with this algorithm. Examples of the SP effects generated by point sources of the primary flow in the presence of simple geometrical structures show the diversity of the possible responses. The various responses can be understood in terms of the distributions of the induced current sources caused by the primary flow. The results from field studies at Red Hill Hot Springs, Utah, are used in an example of the joint modeling of thermal and SP data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3