Genetic‐algorithm/neural‐network approach to seismic attribute selection for well‐log prediction

Author:

Dorrington Kevin P.1,Link Curtis A.2

Affiliation:

1. Formerly Department of Geophysical Engineering, Montana Tech of University of Montana, 1300 W. Park Street, Butte, Montana 59701; presently ConocoPhillips Inc., 600 N. Dairy Ashford, Houston, Texas 77252.

2. Department of Geophysical Engineering, Montana Tech of University of Montana, 1300 W. Park Street, Butte, Montana 59701.

Abstract

Neural‐network prediction of well‐log data using seismic attributes is an important reservoir characterization technique because it allows extrapolation of log properties throughout a seismic volume. The strength of neural‐networks in the area of pattern recognition is key in its success for delineating the complex nonlinear relationship between seismic attributes and log properties. We have found that good neural‐network generalization of well‐log properties can be accomplished using a small number of seismic attributes. This study presents a new method for seismic attribute selection using a genetic‐algorithm approach. The genetic algorithm attribute selection uses neural‐network training results to choose the optimal number and type of seismic attributes for porosity prediction. We apply the genetic‐algorithm attribute‐selection method to the C38 reservoir in the Stratton field 3D seismic data set. Eleven wells with porosity logs are used to train a neural network using genetic‐algorithm selected‐attribute combinations. A histogram of 50 genetic‐algorithm attribute selection runs indicates that amplitude‐based attributes are the best porosity predictors for this data set. On average, the genetic algorithm selected four attributes for optimal porosity log prediction, although the number of attributes chosen ranged from one to nine. A predicted porosity volume was generated using the best genetic‐algorithm attribute combination based on an average cross‐validation correlation coefficient. This volume suggested a network of channel sands within the C38 reservoir.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3