Affiliation:
1. Schlumberger Cambridge Research, Cambridge, United Kingdom. .
Abstract
The ability to derive a near-surface shear-velocity profile from ambient-noise records is useful for seismic applications such as shear-wave statics estimation and geohazard prediction. Measurements of seafloor compliance and Scholte wave velocity and amplitude are all related to the near-surface shear-velocity profile. I analyzed a data set of [Formula: see text] of continuous noise records recorded by an ocean bottom cable deployed in [Formula: see text] deep water for seafloor compliance and Scholte waves. I failed to observe seafloor compliance because of limitations in the record length. I have detected Scholte waves on the inline and vertical component geophones and Love waves on the crossline component using [Formula: see text] spectra. Both the Scholte and Love wave phase-velocities can be explained by a simple 1D isotropic near-surface model. The Scholte waves may have been excited by acoustic energy from the recording vessel, while no satisfactory excitation mechanism has been found for the Love waves.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献