Various-scale electromagnetic investigations of high-salinity zones in a coastal plain

Author:

Mitsuhata Yuji12,Uchida Toshihiro12,Matsuo Koichi12,Marui Atsunao12,Kusunose Kinichirou12

Affiliation:

1. National Institute of Advanced Industrial Science and Technology, Central No. 7, 1-1-1 Higashi, Ibaraki 305-8567, Japan. E-mail: y.mitsuhata@aist.go.jp; uchida_toshihiro@aist.go.jp.

2. Nittetsu Mining Consultants Company Ltd., Tokyo, Japan.

Abstract

Three different-scale electromagnetic (EM) measurements have been performed in the Kujukuri coastal plain, southeast Japan, to investigate the distribution of saline groundwater. The three techniques were audio-frequency magnetotelluric (AMT), transient electromagnetic (TEM), and small loop-loop EM measurements. The resistivity sections estimated from these data sets reveal three independent resistivity distributions extending to different depths. The AMT method reveals a regional-scale resistivity distribution across the plain to a maximum depth of approximately [Formula: see text] and the existence of deep conductive zones, which are inferred to be associated with fossil seawater trapped in a Pleistocene formation. The TEM results show a medium-scale resistivity distribution to depths of approximately [Formula: see text], in which two shallow conductive zones are recognized. It is concluded that these features are caused by present seawater intrusion and high-salinity salt-marsh deposits formed during sporadic marine regressions. The small loop-loop EM method provided a shallow resistivity profile that highlights the conductive salt-marsh deposits and resistive sandy ridges. Although these resistivity sections correspond to different depth ranges, the overlapping portions of the sections are very consistent with one another. These EM methods are useful in detecting and interpreting important resistivity features. Taking the geologic evolution of the coastal plains into consideration is crucial when interpreting resistivity profiles such as these, and our results suggest that the presence of fossil seawater is an important factor controlling resistivity at a variety of depths.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3