Elastic full waveform inversion of multicomponent ocean-bottom cable seismic data: Application to Alba Field, U. K. North Sea

Author:

Sears Timothy J.12,Barton Penny J.12,Singh Satish C.12

Affiliation:

1. University of Cambridge, LITHOS Group, Bullard Laboratories, Cambridge, U. K.

2. Institut de Physique du Globe du Paris, LITHOS Group, Laboratoire de Geosciences Marines, Paris, France.

Abstract

Elastic full waveform inversion of multichannel seismic data represents a data-driven form of analysis leading to direct quantification of the subsurface elastic parameters in the depth domain. Previous studies have focused on marine streamer data using acoustic or elastic inversion schemes for the inversion of P-wave data. In this paper, P- and S-wave velocities are inverted for using wide-angle multicomponent ocean-bottom cable (OBC) seismic data. Inversion is undertaken using a two-dimensional elastic algorithm operating in the time domain, which allows accurate modeling and inversion of the full elastic wavefield, including P- and mode-converted PS-waves and their respective amplitude variation with offset (AVO) responses. Results are presented from the application of this technique to an OBC seismic data set from the Alba Field, North Sea. After building an initial velocity model and extracting a seismic wavelet, the data are inverted instages. In the first stage, the intermediate wavelength P-wave velocity structure is recovered from the wide-angle data and then the short-scale detail from near-offset data using P-wave data on the [Formula: see text] (vertical geophone) component. In the second stage, intermediate wavelengths of S-wave velocity are inverted for, which exploits the information captured in the P-wave’s elastic AVO response. In the third stage, the earlier models are built on to invert mode-converted PS-wave events on the [Formula: see text] (horizontal geophone) component for S-wave velocity, targeting first shallow and then deeper structure. Inversion of [Formula: see text] alone has been able to delineate the Alba Field in P- and S-wave velocity, with the main field and outlier sands visible on the 2D results. Inversion of PS-wave data has demonstrated the potential of using converted waves to resolve shorter wavelength detail. Even at the low frequencies [Formula: see text] inverted here, improved spatial resolution was obtained by inverting S-wave data compared with P-wave data inversion results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3