Permeability prediction from MICP and NMR data using an electrokinetic approach

Author:

Glover P. W.123,Zadjali I. I.123,Frew K. A.123

Affiliation:

1. Départment de géologie et de génie géologique, Faculté de sciences et de génie, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada..

2. Petroleum development Oman, P.O. Box 125, 166, Mina Al Fahal, Muscat, Oman..

3. Schlumberger Information Solutions, 5599 San Felipe, Suite 1700, Houston, Texas 77095..

Abstract

The accurate modeling of oil, gas, and water reservoirs depends fundamentally upon access to reliable rock permeabilities that cannot be obtained directly from downhole logs. Instead, a range of empirical models are usually employed. We propose a new model that has been derived analytically from electrokinetic theory and is equally valid for all lithologies. The predictions of the new model and four other common models (Kozeny-Carman, Berg, Swanson, and van Baaren) have been compared using measurements carried out on fused and unfused glass bead packs as well as on 91 rock samples representing 11 lithologies and three coring directions. The new model provides the best predictions for the glass bead packs as well for all the lithologies. The crux of the new model is to have a good knowledge of the relevant mean grain diameter, for example, from MICP data. Hence, we have also predicted the permeabilities of 21 North Sea well cores using all five models and five different measures of relevant grain size. These data show that the best predictions are provided by the use of the new model with the geometric mean grain size. We have also applied the new model to the prediction of permeability from NMR data of a [Formula: see text] thick sand-shale succession in the North Sea by inverting the [Formula: see text] spectrum to provide a value for the geometric mean grain size. The new model shows a good match to all 348 core measurements from the succession, performing better than the SDR, Timur-Coates, HSCM, and Kozeny-Carman predictions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3