VELOCITY AND FREQUENCY FILTERING OF SEISMIC DATA USING LASER LIGHT

Author:

Dobrin Milton B.1,Ingalls Arthur L.2,Long James A.1

Affiliation:

1. United Geophysical Corporation, Pasadena, California

2. Conductron Corporation, Ann Arbor, Michigan

Abstract

When coherent light from a laser beam is passed through a transparent reduction of a variable‐density or variable‐area record section, the seismic signals act as an optical grating to produce a diffraction pattern which is the two‐dimensional Fourier transform of the section itself. With suitable lenses the diffraction pattern can be converted back into an image of the original section. By obstructing portions of the pattern corresponding to particular frequencies or dips on the section one can remove such frequencies or dips from the reconstructed image. The equipment developed for this processing incorporates special design features to combine high optical resolution, precise discrimination of moveouts and frequencies, limitation in the length of the overall optical path to permit the use of a short optical bench, and visual monitoring by use of a microscope or a closed‐circuit TV system. Filter elements consist of wedges mounted on a rotary stand for velocity rejection, wires of various diameters for band stop frequency rejection, and plates bounded by knife edges for low‐pass filtering. The technique is applicable to most problems encountered in seismic prospecting where spurious events obscure desired reflections. The most frequent application so far has been the removal of multiple reflections. The method has turned out to be highly useful for eliminating noise, regardless of origin, which interferes with reflections whenever the noise consists of traveling events, even though fragmental, which have different apparent velocities from the reflections. The method has also been effective in solving structural problems in tectonic areas by removing diffractions or, alternatively, by enhancing them at the expense of the reflections to delineate faults and other sources of diffraction. Ringing or reverberation can often be attenuated or eliminated in marine shooting by passing reflection frequencies that are less than the lowest observed harmonic of the fundamental reverberation frequency. Examples are shown of transforms and/or filtered sections illustrating these applications. A particularly valuable feature of this optical processing system is the ease of monitoring the results. The facility with which this can be done gives the technique distinct advantages over digital or analog methods, where the geophysicist loses contact with his results while processing is under way. Optical filtering also offers an intrinsically more economical approach to seismic data processing because hundreds of information channels can be handled n a single photographic operation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting holistic migration;The Leading Edge;2021-10

2. Extended resolution: Neidell is right;The Leading Edge;2018-01

3. O;Dictionary of Mathematical Geosciences;2017

4. Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data;Earth Surface Processes and Landforms;2008

5. A procedure for optimally removing localized coherent noise;GEOPHYSICS;1995-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3