Radiation impedance of torsionally vibrating seismic sources

Author:

Dorn Geoffrey A.1

Affiliation:

1. Engineering Geoscience, University of California, Berkeley

Abstract

The thickness and shear‐wave velocity of a surface layer can theoretically be determined from seismic radiation impedance measurements using a torsional vibrator. These studies also provide physical insight into vibrator‐earth interaction. The radiation impedance of a circular disk vibrating torsionally on an anelastic half‐space has resonance peaks with a spacing that is a function of the ratio between baseplate radius and seismic wavelength. At low frequencies the shape of the impedance function is nearly independent of the baseplate flexure, although the magnitude is affected. At high frequencies the impedance depends strongly on the flexibility of the baseplate. The mass of the baseplate introduces an additional resonant effect, the frequency of which is a function of the baseplate mass. The presence of a surface layer produces an impedance curve which oscillates around the half‐space response. The amplitude of the oscillations is a function of the acoustic impedance contrast and depends upon the radiation pattern of the source. The oscillations are resonances caused by reflections within the surface layer, and both the period and amplitude of the oscillations are inversely proportional to the layer thickness. The amplitude of the layer resonance decreases rapidly as material damping increases. With impedance measurements over a sufficiently broad frequency range (up to about 500 Hz), it may be feasible to use half‐space oscillations and the layer resonances to determine the shear velocity and thickness of the layer of material beneath the baseplate.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;3C Seismic and VSP: Converted waves and vector wavefield applications;2016-01-01

2. Analytical study of a disk‐type torsional shear‐wave radiator immersed in an elastic medium;The Journal of the Acoustical Society of America;1996-07

3. Vibrator signals;Proceedings of the IEEE;1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3