Ghosting and marine signature deconvolution: A prerequisite for detailed seismic interpretation

Author:

Jovanovich Dushan B.1,Sumner Roger D.1,Akins‐Easterlin Sharon L.1

Affiliation:

1. Seismology Department, Gulf Research and Development Co., P.O. Drawer 2038, Pittsburgh, PA 15230

Abstract

Detailed lithologic interpretation of seismic sections and/or pseudo‐sonic logs generated from seismic data requires that the seismic trace can be modeled as a reflection series convolved with a zero‐phase broadband wavelet. Ghosting and marine signature deconvolution processing is a prerequisite for assuring that the seismic wavelet on a marine CDP section will be zero phase. A deterministic approach to deconvolution is centered around the concept of abandoning the purely statistical method of wavelet estimation and actually measuring the seismic wavelet. A proper signature recording for marine data is, therefore, a crucial component of deterministic deconvolution. Another important element in the deterministic deconvolution sequence is the application of a deghosting filter to remove near‐surface reflections. Proper application of a deghosting filter significantly improves the correlation between log synthetics and the seismic trace. It has been found that statistical deconvolution schemes, because of the number of statistical hypotheses required to produce a deconvolution filter, produce residual wavelets that are highly variable in character and whose average phases cover the entire phase spectrum, modulo 2π. Examples of a Gulf Coast marine line which was shot with Aquapulse™, air gun, and Maxipulse™ sources by the RV Hollis Hedberg are presented to demonstrate the differences between statistical and deterministic deconvolution processing sequences. It will be shown, using sonic logs from wells adjacent to the seismic line, that the deterministic deconvolution sections for all three sources are close to zero phase while the statistical deconvolution sections have residual average phase errors between 180 and 270 degrees. The deterministic deconvolution sections have a high degree of correlation among themselves and to the wells adjacent to the line, while the statistical deconvolution sections correlate poorly to each other and to the wells. Synthetic seismograms and their impedance logs, and the seismic sections and their corresponding pseudo‐sonic logs, are used to demonstrate how deconvolution influences lithologic interpretation. ™Western Geophysics Co.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3