Geologic model building in SEAM Phase II — Land seismic challenges

Author:

Regone Carl1,Stefani Joseph2,Wang Peter3,Gerea Constantin4,Gonzalez Gladys5,Oristaglio Michael6

Affiliation:

1. BP (retired).

2. Chevron Energy Technology Company.

3. Formerly Schlumberger WesternGeco; presently Paradigm.

4. Total.

5. Formerly Repsol USA; presently V&G Exploration Inc.

6. Yale University.

Abstract

Three digital earth models were designed and constructed during SEAM Phase II to study exploration challenges at the scale of modern land seismic surveys. Although built as generic models, each was based on one or more related geologic type areas. The Barrett model represents the seismic anisotropy of complex laminated and fractured shale reservoirs, based on the Woodford and Eagle Ford formations and set below a stratigraphic overburden and near surface of a North American midcontinent basin. The Arid model features the extreme property contrasts of desert terrains in a 500 m thick near surface that juxtaposes hard carbonate bedrock and soft sediments filling karsts, typical of the Saudi Arabian Peninsula. The Foothills model contains sharp surface topography and alluvial fan-like sediments above complex fold-and-thrust structures based on the compressive tectonics of the Llanos Foothills of South America. All three models were built in workflows that combined automated steps with a large measure of manual model building, which represents the current state of the art in geologic modeling for large-scale geophysical simulations. The Barrett and Arid models each contain about 1.5 billion grid cells representing regions 10 × 10 × 3.75 km in physical size. The Foothills model has about 2 billion cells representing a region about 14.5 × 12.5 × 11 km. Full elastic-wave simulations with these models were run for a combined total of about 170,000 shots, usually with millions of recorded channels per shot, generating several petabytes of seismic data in standard and novel shot-receiver geometries. Selected shots from these simulations show that large, detailed earth models can reproduce features of land seismic surveys that continue to challenge the best modern seismic data processing and imaging techniques.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional seismic forward modeling and analysis of influencing factors on deep imaging in the piedmont southwestern Tarim Basin;SEG 1st Tarim Ultra-Deep Oil & Gas Exploration Technology Workshop, Korla, China, June 3-5, 2024;2024-08-22

2. Seismic modeling using pseudo-impedance derived from physical models;The Leading Edge;2024-07

3. Design of Undersampled Seismic Acquisition Geometries via End-to-End Optimization;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Dip-Informed Neural Network for Self-Supervised Anti-Aliasing Seismic Data Interpolation;IEEE Transactions on Geoscience and Remote Sensing;2024

5. GAN Supervised Seismic Data Reconstruction: An Enhanced Learning for Improved Generalization;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3