Method for depth estimation on aeromagnetic vertical gradient anomalies

Author:

Barongo J. O.1

Affiliation:

1. University of Nairobi, Department of Geology, P. O. Box 30197, Nairobi, Kenya

Abstract

The straight‐slope technique introduced some years ago by Vacquier et al. (1951) is employed to develop simple empirical procedures that can be used to determine depth to the top/center of anomalous sources on measured aeromagnetic vertical gradient profiles. Five geologic bodies/structures in the form of their magnetic/geometric model equivalents, namely, point pole, point dipole, finite dipole, dipping dike, and dipping contact are considered. From analysis of the normalized theoretical curves due to those models it is observed that the horizontal projection of the straight part of the steepest sections of each curve is insensitive to changes in the inclination of the Earth’s magnetic field and also to the dip angle of dipping models. Further analysis of the curves using this observation leads to the conclusion that, when dealing with the interpretation of observed vertical gradient profiles, the length of the horizontal projection on a given profile must be doubled to obtain depth to the point‐pole, point‐dipole, or finite‐dipole source. For a geologic contact and a wide but shallow (i.e., the width more than twice the depth) dike, the length of the projection gives the depth for either source. However, a thin but deeply buried (i.e., the width less than twice the depth) dike, requires use of characteristic curves such as those developed in this study. Application of the procedures to observed vertical gradient results from the White Lake region of Ontario, Canada, has proven quite successful.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3