Estimation of effective porosity using geostatistics and multiattribute transforms: A case study

Author:

Pramanik A. G.1,Singh V.1,Vig Rajiv1,Srivastava A. K.1,Tiwary D. N.1

Affiliation:

1. Oil and Natural Gas Corporation Limited, Geodata Processing & Interpretation Centre, Dehradun‐248 195, U.A., India. Emails:

Abstract

The middle Eocene Kalol Formation in the north Cambay Basin of India is producing hydrocarbons in commercial quantity from a series of thin clastic reservoirs. These reservoirs are sandwiched between coal and shale layers, and are discrete in nature. The Kalol Formation has been divided into eleven units (K‐I to K‐XI) from top to bottom. Multipay sands of the K‐IX unit 2–8 m thick are the main hydrocarbon producers in the study area. Apart from their discrete nature, these sands exhibit lithological variation, which affects the porosity distribution. Low‐porosity zones are found devoid of hydrocarbons. In the available 3D seismic data, these sands are not resolved and generate a composite detectable seismic response, making reservoir characterization through seismic attributes impossible. After proper well‐to‐seismic tie, the major stratigraphic markers were tracked in the 3D seismic data volume for structural mapping and carrying out attribute analysis. The 3D seismic volume was inverted to obtain an acoustic impedance volume using a model‐based inversion algorithm, improving the vertical resolution and resolving the K‐IX pay sands. For better reservoir characterization, effective porosity distribution was estimated through different available techniques taking the K‐IX upper sand as an example. Various sample‐based seismic attributes, the impedance volume, and effective porosity logs were used as inputs for this purpose. These techniques are map‐based geostatistical methods using the acoustic impedance volume, stepwise multilinear regression, probabilistic neural networks (PNN) using multiattribute transforms, and a new technique that incorporates both geostatistics and multiattribute transforms (either linear or nonlinear). This paper is an attempt to compare different available techniques for porosity estimation. On comparison, it is found that the PNN‐based approach using ten sample‐based attributes showed highest crosscorrelation (0.9508) between actual and predicted effective porosity logs at eight wells in the study area. After validation, the predicted effective porosity maps for the K‐IX upper sand are generated using different techniques, and a comparison among them is made. The predicted effective porosity map obtained from PNN‐based model provides more meaningful information about the K‐IX upper sand reservoir. In order to give priority to the actual effective porosity values at wells, the predicted effective porosity map obtained from PNN‐based model for the K‐IX upper sand was combined with actual effective porosity values using co‐kriging geostatistical technique. This final map provides geologically more realistic predicted effective porosity distribution and helps in understanding the subsurface image. The implication of this work in exploration and development of hydrocarbons in the study area is discussed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3