Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales

Author:

Allan Adam M.1,Vanorio Tiziana1,Dahl Jeremy E. P.2

Affiliation:

1. Stanford University, Stanford Rock Physics Laboratory, Stanford, California, USA..

2. Stanford University, Stanford Institute for Materials and Energy Sciences, Stanford, California, USA..

Abstract

The sources of elastic anisotropy in organic-rich shale and their relative contribution therein remain poorly understood in the rock-physics literature. Given the importance of organic-rich shale as source rocks and unconventional reservoirs, it is imperative that a thorough understanding of shale rock physics is developed. We made a first attempt at establishing cause-and-effect relationships between geochemical parameters and microstructure/rock physics as organic-rich shales thermally mature. To minimize auxiliary effects, e.g., mineralogical variations among samples, we studied the induced evolution of three pairs of vertical and horizontal shale plugs through dry pyrolysis experiments in lieu of traditional samples from a range of in situ thermal maturities. The sensitivity of P-wave velocity to pressure showed a significant increase post-pyrolysis indicating the development of considerable soft porosity, e.g., microcracks. Time-lapse, high-resolution backscattered electron-scanning electron microscope images complemented this analysis through the identification of extensive microcracking within and proximally to kerogen bodies. As a result of the extensive microcracking, the P-wave velocity anisotropy, as defined by the Thomsen parameter epsilon, increased by up to 0.60 at low confining pressures. Additionally, the degree of microcracking was shown to increase as a function of the hydrocarbon generative potential of each shale. At 50 MPa confining pressure, P-wave anisotropy values increased by 0.29–0.35 over those measured at the baseline — i.e., the immature window. The increase in anisotropy at high confining pressure may indicate a source of anisotropy in addition to microcracking — potentially clay mineralogical transformation or the development of intrinsic anisotropy in the organic matter through aromatization. Furthermore, the evolution of acoustic properties and microstructure upon further pyrolysis to the dry-gas window was shown to be negligible.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3