Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels

Author:

Zeng Hongliu1

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas, USA..

Abstract

Despite routine demand from petroleum explorationists and field developers, interpreting (inverting) seismic data for reservoir thickness from acoustic impedance (AI) or lithology volume requires a high-quality, unbiased well database and the special skills of elite geophysicists. I have developed a new method, based on linear combination and color blending of multiple-frequency panels, to estimate AI and thickness without the strict implementation of complex mathematics and extensive well control. Aimed at readjusting the thin-bed tuning effect in a formation of normal thickness range (up to [Formula: see text]; [Formula: see text] = dominant wavelength), a linear combination of three frequency panels from [Formula: see text] data would lead to a reasonable visual match between a sandstone (shale) body and its seismic event, should the combined amplitude spectrum roughly match the AI spectrum. A red-green-blue blending of frequency panels further extends the interpretive benefits by illustrating the thickness in color, adding a sense of thickness cyclicity on the vertical view and that of sandstone thickness map on stratal-slice view. Tests using a simple wedge model and a complex, geologically realistic multi-thin-bed model demonstrate that the proposed workflow may achieve decent geometry (thickness) estimation and reasonably high correlation ([Formula: see text]) for AI prediction with minimal or no well control. The results are similar to colored inversion in the fast-track principle, with improved stability and less error (at least in this study). More complex procedures — such as linear regression and model-based inversion — may lead to minor to moderate improvement with adequate well control. An application to a field data set confirmed the value of the methods in high-resolution reservoir-thickness imaging, with a strong potential for stratigraphically oriented studies, such as seismic chronostratigraphy, sequence stratigraphy, and seismic sedimentology.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3