Shear‐wave logging with dipole sources

Author:

Chen S. T.1

Affiliation:

1. Exxon Production Research Company, P.O. Box 2189, Houston, TX 77252-2189

Abstract

Laboratory measurements have verified a novel technique for direct shear‐wave logging in hard and soft formations with a dipole source, as recently suggested in theoretical studies. Conventional monopole logging tools are not capable of measuring shear waves directly. In particular, no S waves are recorded in a soft formation with a conventional monopole sonic tool because there are no critically refracted S rays when the S-wave velocity of the rock is less than the acoustic velocity of the borehole fluid. The present studies were conducted in the laboratory with scale models representative of sonic logging conditions in the field. We have used a concrete model to represent hard formations and a plastic model to simulate a soft formation. The dipole source, operating at frequencies lower than those conventionally used in logging, substantially suppressed the P wave and excited a wave train whose first arrival traveled at the S-wave velocity. As a result, one can use a dipole source to log S-wave velocity directly on‐line by picking the first arrival of the full wave train, in a process similar to that used in conventional P-wave logging. Laboratory experiments with a conventional monopole source in a soft formation did not produce S waves. However, the S-wave velocity was accurately estimated by using Biot’s theory, which required measuring the Stoneley‐wave velocity and knowing other borehole parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3