Quantitative seismic fracture characterization of a sandstone reservoir — Decatur, Illinois Basin

Author:

Chaudhuri Debasis1,Roy Ankur1

Affiliation:

1. Indian Institute of Technology Kharagpur, Kharagpur, India..

Abstract

The Illinois Basin Decatur Project, a carbon capture and sequestration task, was undertaken to sequester 1 million tonnes of CO2 into a sandstone reservoir. A 3D seismic survey was conducted to characterize the reservoir. A geomodel was developed from seismic data, inversion results, and well data to geostatistically map the storage potential of the reservoir. However, no fracture model was created or utilized in this exercise. Fractures inherently influence the porosity and permeability of a reservoir. Ignoring them in reservoir characterization is not an optimal reservoir management practice. The image-log interpretation from a few vertical wells drilled in the area shows the bedding plane dips, but no fracture has been identified. However, the lack of fracture crossings in a few vertical wells does not imply that a formation is devoid of fractures altogether. Hence, seismic fracture characterization (leveraging the dense 3D seismic data) is necessary for a reservoir characterization exercise. We utilized the publicly available Decatur 3D seismic data set to run a seismic fracture characterization workflow to delineate potential fracture corridors present in the reservoir. We calculated three edge detection attributes (structural tensor, structure-oriented semblance, and structural dip) in combination to delineate the fracture lineaments. Our workflow extracts several quantitative measures of the seismic lineaments such as dip, azimuth, area, and length, which can be analyzed statistically. The principal focus of this work is to find a way forward to integrate the fractures from seismic data in a geologic model that can be utilized in simulations. Based on our interpretation of seismic fractures, we created a discrete fracture network that can be a building block for creating a finer-resolution fracture model. We also explored the fractal characteristics of seismic-derived fracture lineaments as a way forward for generating discrete fracture networks.

Funder

Indian Institute of Technology, Kharagpur

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3