A robust implementation and application of antileakage Fourier transform interpolation

Author:

Qin Fuhao1,Leger Pierre C.2,Ren Jiaxiang3,Aleksic Vladimir2,Rowe Robert W.2,Zainaldin Saud2,Hadab Salah A.2

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..

2. Saudi Aramco, Exploration Operations Department, Dhahran, Saudi Arabia..

3. Saudi Aramco, Exploration Application Services Department, Dhahran, Saudi Arabia..

Abstract

One major difficulty in land seismic data processing is noise related to a complex near surface. The presence of sand dunes and loose deposits overlaying relatively high velocity layers leads to the generation of strong near-surface noise that travels at low velocities. This energy is often aliased despite the small shot and geophone spacing of modern 3D wide-azimuth seismic surveys. Direct application of velocity-based filtering in frequency-wavenumber (f-k) or Radon domains is not effective in suppressing this noise. Seismic data need to be interpolated and regularized to dealias the slow-traveling near-surface arrivals before denoising technologies are applied. In this work, we utilized an f-k domain seismic data interpolation technique similar to the antileakage Fourier transform method for its ability to remove leaked energy in the f-k domain arising from gaps and irregularities during data acquisition. To deal with aliasing in the input data, we implemented an antialiasing weighting function based on piecewise linearity of the seismic data. Seismic images obtained from processing with data regularization show significant signal-to-noise ratio improvement over previous results. Because of the uplift brought by this new interpolation technology and workflow, data interpolation and regularization have become an integral part of Saudi Aramco's land 3D data processing workflow.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3