FLUID SATURATION EFFECTS ON DYNAMIC ELASTIC PROPERTIES OF SEDIMENTARY ROCKS

Author:

Gregory A. R.1

Affiliation:

1. Gulf Research and Development Co., Pittsburgh, Pennsylvania

Abstract

The influence of saturation by water, oil, gas, and mixtures of these fluids on the densities, velocities, reflection coefficients, and elastic moduli of consolidated sedimentary rocks was determined in the laboratory by ultrasonic wave propagation methods. Twenty rock samples varying in age from Pliocene to early Devonian and in porosity from 4 to 41 percent were tested under uniform pressures equivalent to subsurface depths of 0 to 18,690 ft. Fluid saturation effects on compressional‐wave velocity are much larger in low‐porosity than in high‐porosity rocks; this correlation is strengthened by elevated pressures but is absent at atmospheric pressure. At a frequency of 1 MHz, the shear‐wave velocities do not always decrease when liquid pore saturants are added to rocks as theorized by Biot; agreement with theory is dependent upon pressure, porosity, fluid‐mineral chemical interactions, and the presence of microcracks in the cementing material. Experimental results support the belief that lower compressional‐wave velocities and higher reflection coefficients are obtained in sedimentary rocks that contain gas. Replacing pore liquids with gas markedly reduces the elastic moduli of rocks, and the effect is enhanced by decreasing pressure. As a rule, the moduli decrease as the porosity increases; Poisson’s ratio is an exception to the rule. Liquid and gas saturation in consolidated rocks can also be distinguished by the ratio of compressional and shear wave velocities [Formula: see text]. The potential diagnostic value of elastic moduli in seismic exploration may stimulate interest in the use of shear‐wave reflection methods in the field.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3