GRADIENT MEASUREMENTS IN AEROMAGNETIC SURVEYING

Author:

Hood Peter1

Affiliation:

1. Geological Survey of Canada, Ottawa, Canada

Abstract

The recent development of highly sensitive magnetometers, such as the optical‐pumping varieties, has made feasible the measurement of the first vertical derivative of the total field (∂ΔT/∂h) in aeromagnetic surveys. This is accomplished by using two sensitive magnetometer heads separated by a constant vertical distance, and recording the difference in outputs. The effect of diurnal is thus eliminated in the resultant differential output, and this is an especially desirable feature in northern Canada where the diurnal variation is usually much greater than is found in more southerly magnetic latitudes. Moreover, steeply dipping geological contacts in high‐magnetic latitudes are outlined by the resultant zero‐gradient contour. It is also possible to obtain the depth of burial of the contact from the graph of (∂ΔT/∂h) versus (x∂ΔT/∂x) where x is the horizontal distance measured from the contact. Similar quantitative interpretations may be made for the point pole and dipole. The data reduction necessary to produce a vertical‐gradient map is much simpler than with the total‐field case because no datum levelling is necessary. Since the aircraft track will be available from the main compilation it is only necessary to plot the resultant vertical‐gradient values on the track map and contour. Thus, two maps will be obtained for little more than the price of one but with a greatly increased gain in geophysical information concerning the geometry of the causative bodies. Actually, a first‐derivative map is difficult (and therefore costly) to produce by any other means. The measurement of the vertical gradient would appear to be the main advantage to using hundredth‐gamma magnetometers in aeromagnetic surveys, since those types presently in service are sensitive enough for the effective delineation of total‐field anomalies.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3