3D seismic refraction traveltime tomography at a groundwater contamination site

Author:

Zelt Colin A.12,Azaria Aron12,Levander Alan12

Affiliation:

1. Rice University, Department of Earth Science, 6100 Main St., Houston, Texas 77251. .

2. Formerly Rice University, Department of Earth Science, Houston, Texas; presently Compagnie Generale de Geophysique (CGG), Houston, Texas. .

Abstract

We have applied traveltime tomography to 3D seismic refraction data collected at Hill Air Force Base, Utah, in an approximately [Formula: see text] area over a shallow [Formula: see text] groundwater contamination site. The purpose of this study is to test the ability of 3D first-arrival-time data to characterize the shallow environment and aid remediation efforts. The aquifer is bounded below by a clay aquiclude, into which a paleochannel has been incised and acts as a trap for dense nonaqueous phase liquid (DNAPL) contaminants. A regularized nonlinear tomographic approach was applied to [Formula: see text] first-arrival traveltimes to obtain the smoothest minimum-structure 3D velocity model. The resulting velocity model contains a velocity increase from less than [Formula: see text] in the upper [Formula: see text]. The model also contains a north-south-trending low-velocity feature interpreted to be the paleochannel, based on more than 100 wells in the area. Checkerboard tests show [Formula: see text] lateral resolution throughout most of the model. The preferred final model was chosen after a systematic test of the free parameters involved in the tomographic approach, including the starting model. The final velocity model compares favorably with a 3D poststack depth migration and 2D waveform inversion of coincident reflection data. While the long-wavelength features of the model reveal the primary target of the survey, the paleochannel, the velocity model is likely a very smooth characterization of the true velocity structure, particularly in the vertical direction, given the size of the first Fresnel zone for these data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3