Correction for the static shift in magnetotellurics using transient electromagnetic soundings

Author:

Sternberg Ben K.1,Washburne James C.1,Pellerin Louise2

Affiliation:

1. Department of Mining and Geological Engineering, Bldg. 12, College of Engineering and Mines, The University of Arizona, Tucson, AZ 85721

2. Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Abstract

Shallow inhomogeneities can lead to severe problems in the interpretation of magnetotelluric (MT) data by shifting the MT apparent resistivity sounding curve by a scale factor, which is independent of frequency on the standard log‐apparent‐resistivity versus log‐frequency display. The amount of parallel shift, commonly referred to as the MT static shift, can not be determined directly from conventionally recorded MT data at a single site. One method for measuring the static shift is a controlled‐source measurement of the magnetic field. Unlike the electric field, the magnetic field is relatively unaffected by surface inhomogeneities. The controlled‐source sounding (which may be a relatively shallow sounding made with lightweight equipment) can be combined with a deep MT sounding to obtain a complete, undistorted model of the earth. Inversions of the static shift‐corrected MT data provide a much closer match to well‐log resistivities than do inversions of the uncorrected data. The particular controlled‐source magnetic‐field sounding which we used was a central‐induction Transient ElectroMagnetic (TEM) sounding. Correction for the static shift in the MT data was made by jointly inverting the MT data and the TEM data. A parameter which allowed vertical shifts in the MT apparent resistivity curves was included in the computer inversion to account for static shifts. A simple graphical comparison between the MT apparent resistivities and the TEM apparent resistivities produced essentially the same estimate of the static shift (within 0.1 decade) as the joint computer inversion. Central‐induction TEM measurements were made adjacent to over 100 MT sites in central Oregon. The complete data base of over 100 sites showed an average static shift between 0 and 0.2 decade. However, in the rougher topography and more complex structure of the Cascade Mountain Range, the majority of the sites had static shifts of the order of 0.3 to 0.4 decade. The static shifts in this area are probably due to a combination of topography and surficial inhomogeneities. The TEM apparent resistivity (which is used to estimate the unshifted MT apparent resistivity) does not necessarily agree with either the transverse electric (TE) or the transverse magnetic (TM) MT polarization. TEM apparent resistivity may occur between the two, or may agree with one of the two polarizations, or may lie outside the MT polarizations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3