Recognition and reconstruction of coherent energy with application to deep seismic reflection data

Author:

van der Baan Mirko1,Paul Anne1

Affiliation:

1. Laboratoire de Géophysique Interne et Tectonophysique, Université Joseph Fourier, B.P. 53, 38041 Grenoble Cedex 9, France. Emails:

Abstract

Reflections in deep seismic reflection data tend to be visible on only a limited number of traces in a common midpoint gather. To prevent stack degeneration, any noncoherent reflection energy has to be removed. In this paper, a standard classification technique in remote sensing is presented to enhance data quality. It consists of a recognition technique to detect and extract coherent energy in both common shot gathers and final stacks. This technique uses the statistics of a picked seismic phase to obtain the likelihood distribution of its presence. Multiplication of this likelihood distribution with the original data results in a “cleaned up” section. Application of the technique to data from a deep seismic reflection experiment enhanced the visibility of all reflectors considerably. Because the recognition technique cannot produce an estimate of “missing” data, it is extended with a reconstruction method. Two methods are proposed: application of semblance weighted local slant stacks after recognition, and direct recognition in the linear τ-p domain. In both cases, the power of the stacking process to increase the signal‐to‐noise ratio is combined with the direct selection of only specific seismic phases. The joint application of recognition and reconstruction resulted in data images which showed reflectors more clearly than application of a single technique.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference24 articles.

1. Lateral prediction for noise attenuation by t-x and f-x techniques

2. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube

3. Bano, M., 1989, Extraction automatique des réflexions, modelisation des diffractions et migration des données de sismique profonde ECORS: Ph.D. thesis, Université Louis Pasteur, Strasbourg.

4. Multivariate statistical analyses applied to seismic facies recognition

5. Application of singular value decomposition to vertical seismic profiling

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3