Seismic time-frequency spectral decomposition by matching pursuit

Author:

Wang Yanghua1

Affiliation:

1. Imperial College London, Centre for Reservoir Geophysics, Department of Earth Science and Engineering, South Kensington, London SW7 2BP, United Kingdom. .

Abstract

A seismic trace may be decomposed into a series of wavelets that match their time-frequency signature by using a matching pursuit algorithm, an iterative procedure of wavelet selection among a large and redundant dictionary. For reflection seismic signals, the Morlet wavelet may be employed, because it can represent quantitatively the energy attenuation and velocity dispersion of acoustic waves propagating through porous media. The efficiency of an adaptive wavelet selection is improved by making first a preliminary estimate and then a localized refining search, whereas complex-trace attributes and derived analytical expressions are also used in various stages. For a constituent wavelet, the scale is an important adaptive parameter that controls the width of wavelet in time and the bandwidth of the frequency spectrum. After matching pursuit decomposition, deleting wavelets with either very small or very large scale values can suppress spikes and sinusoid functions effectively from the time-frequency spectrum. This time-frequency spectrum may be used in turn for lithological analysis—for instance, detection of a gas reservoir. Investigation shows that the low-frequency shadow associated with a carbonate gas reservoir still exists, even high-frequency amplitudes are compensated by inverse-[Formula: see text] filtering.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3