ELECTROMAGNETIC INVESTIGATION OF THE SEA FLOOR

Author:

Coggon J. H.1,Morrison H. F.1

Affiliation:

1. Department of Materials Science and Engineering, University of California, Berkeley, California 94720

Abstract

Numerical evaluation of integral expressions for the fields about a vertical magnetic dipole in the sea allows analysis of the electromagnetic response over wide ranges of sea induction number and sea floor conductivity. Our analysis indicates that a marine electromagnetic system for measurement of bottom conductivity variations could readily be designed, with such applications as oceanographic and geologic studies, and mineral exploration. For a source‐receiver system on a homogeneous sea bottom, it is found that: (i) when the ratio k=(sea‐bed conductivity)/(seawater conductivity) is greater than about 0.03, both horizontal and vertical magnetic fields are useful for measurement of bottom conductivity at sea induction numbers less than 30 [induction number =√2 (horizontal transmitter‐receiver separation/skin depth)]. A separation of 30 m and frequencies in the range 300–3500 hz appear suitable for investigation of the upper few meters of unconsolidated bottom sediments. (ii) When the ratio k is less than 0.03, sea induction numbers from 10 to a few hundred are required for detection of seabed conductivity variations. In this case, the horizontal magnetic field, resulting from energy transmission mainly through the seafloor, is the suitable field to use. Electromagnetic sounding of indurated rocks may thus call for frequencies of 100 to 20,000 hz at a separation of 200 m. Field strengths vary strongly with relative sea depth D/R (D=sea depth, R=horizontal source‐receiver separation) when D/R is small; but sensitivity to bottom conductivity is little affected by D/R. Elevation of source and receiver above a seafloor less conductive than seawater reduces field strengths and sensitivity to seabed properties.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualization of Electric Field Response for a Semi Circle Transmitter in Seabed Logging;Studies in Systems, Decision and Control;2021-09-18

2. Marine Electromagnetics;Natural Electromagnetic Fields in Pure and Applied Geophysics;2020

3. Delineating ore-forming rock using a frequency domain controlled-source electromagnetic method;Ore Geology Reviews;2019-12

4. Introduction;Electromagnetic Seabed Logging;2017

5. Magnetic field response of a new antenna design in planarly homogeneous layered media;AIP Conference Proceedings;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3