Anisotropic effective‐medium modeling of the elastic properties of shales

Author:

Hornby Brian E.1,Schwartz Larry M.2,Hudson John A.3

Affiliation:

1. Schlumberger Cambridge Research Ltd., P.O. Box 153, Cambridge CB3 0HG, England and Dept. of Earth Sciences, Bullard Laboratories, Cambridge, England

2. Schlumberger‐Doll Research, Old Quarry Rd., Ridgefield, CT 06877

3. Dept. of Applied Maths and Theoretical Physics, Silver Street, Cambridge, England

Abstract

Shales are complex porous materials, normally consisting of percolating and interpenetrating fluid and solid phases. The solid phase is generally comprised of several mineral components and forms an intricate and anisotropic microstructure. The shape, orientation, and connection of the two phases control the anisotropic elastic properties of the composite solid. We develop a theoretical framework that allows us to predict the effective elastic properties of shales. Its usefulness is demonstrated with numerical modeling and by comparison with established ultrasonic laboratory experiments. The theory is based on a combination of anisotropic formulations of the self‐consistent (SCA) and differential effective‐medium (DEM) approximations. This combination guarantees that both the fluid and solid phases percolate at all porosities. Our modeling of the elastic properties of shales proceeds in four steps. First, we consider the case of an aligned biconnected clay‐fluid composite composed of ellipsoidal inclusions. Anisotropic elastic constants are estimated for a clay‐fluid composite as a function of the fluid‐filled porosity and the aspect ratio of the inclusions. Second, a new processing technique is developed to estimate the distribution of clay platelet orientations from digitized scanning electron microphotographs (SEM). Third, the derived clay platelet distribution is employed to estimate the effective elastic parameters of a solid comprising clay‐fluid composites oriented at different angles. Finally, silt minerals are included in the calculations as isolated spherical inclusions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3