An integration of aeromagnetic and electrical resistivity methods in dam site investigation

Author:

Aina Adebayo1,Olorunfemi Martins O.2,Ojo John S.3

Affiliation:

1. Dept. of Physics, University of Lagos, Lagos Nigeria

2. Dept. of Geology, Obafemi Awolowo University, ILE‐IFE, Nigeria

3. Dept. of Applied Geophysics, Federal University of Technology, Akure, Nigeria

Abstract

Aeromagnetic map and electrical resistivity sounding data obtained along eight traverses were examined at two sites across the Katsina‐Ala River. The principal goals of this exercise were to define depths to the bedrock, bedrock relief, geologic structures, define the nature of the superficial deposit, and select probable minor and major axes for hydroelectric power dams. The aeromagnetic map shows that the basement rocks trend roughly northeast‐southwest, which correlates with the strike of foliation measurements made on rock outcrops along the river channel. A network of cross cutting lineaments, suspected to be faults/fractures that trend approximately northeast/southwest and northwest/southeast, was also delineated from the magnetic map. The depths to the bedrock estimated from resistivity depth sounding data at site I generally vary from 1–53.1 m. Depths to the bedrock estimated at site II range from 1.9–19.5 m. The superficial deposit varies from clay to sandy clay, to clayey sand (with boulders in places), and to sand and laterite. The bedrock relief is relatively flat and gently undulates along most of the traverses, with an overall dip towards the river channel. Traverses E-F or I‐J at site I and K-L at site II are probable dam axes. These traverses are characterized by relatively thin overburden thicknesses and rock heads dipping toward the river channel, thereby reducing the likelihood of water seepages from the flanks of the proposed dam axes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3