Detailed images of the shallow Alpine Fault Zone, New Zealand, determined from narrow-azimuth 3D seismic reflection data

Author:

Kaiser A. E.123,Horstmeyer H.123,Green A. G.123,Campbell F. M.123,Langridge R. M.123,McClymont A. F.123

Affiliation:

1. Institute of Geophysics, ETH Zurich, Zurich, Switzerland. .

2. GNS Science, Lower Hutt, New Zealand. .

3. University of Calgary, Department of Geoscience, Alberta, Canada. .

Abstract

Previous high-resolution seismic reflection investigations of active faults have been based on 2D profiles. Unfortunately, 2D data may be contaminated by out-of-the-plane reflections and diffractions that may be difficult to identify and eliminate. Although full 3D seismic reflection methods allow out-of-the-plane events to be recognized and provide superior resolution to 2D methods, they are only rarely applied in environmental and engineering studies because of high costs. A narrow-azimuth 3D acquisition and processing strategy is introduced to produce a high-resolution seismic reflection volume centered on the Alpine Fault Zone (New Zealand). The shallow 3D images reveal late Quaternary deformation structures associated with this major transpressional plate-boundary fault. The relatively inexpensive narrow-azimuth 3D acquisition pattern consisting of inline source and receiver lines was easily implemented in the field to provide 2- by [Formula: see text] CMP coverage over an approximately 500- by [Formula: see text] area.The narrow-azimuth acquisition strategy was well suited for resolving complex structures within the fault zone. Challenges in processing the data were amplified by the effects of strong velocity heterogeneity in the near surface and the presence of complex dipping, diffracted, and truncated events. A carefully tailored processing scheme including surface-consistent deconvolution, refraction static corrections, noise reduction, dip moveout (DMO) corrections, and 3D depth migration greatly improved the appearance of the final stacks. The 3D images reveal strong reflections from the faulted and folded late Pleistocene erosional basement surface. A steeply dipping planar main (dominant) fault strand can be inferred from the geometry and truncations of the overlying postglacial sediments. The 3D images reveal that the average apparent vertical displacement [Formula: see text] of the basement surface across the dominant fault strand at this location is somewhat less than that estimated from a pilot 2D seismic reflection profile, suggesting that the provisional dip-slip rate based on the 2D data is a maximum.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3