Causes of compressional‐wave anisotropy in carbonate‐bearing, deep‐sea sediments

Author:

Carlson R. L.1,Schaftenaar C. H.2,Moore R. P.2

Affiliation:

1. Department of Geophysics and Geodynamics Research Program, Texas A&M University, College Station, TX 77843

2. Texas A&M University, College Station, TX

Abstract

Forty indurated sediment samples from DSDP site 516 were studied with the principle objective of determining which of several proposed mechanisms is the cause of acoustic anisotropy in carbonate‐bearing deep‐sea sediments. Recovered from sub‐bottom depths between 388 and 1222 m, the samples have properties exhibiting the following ranges: wet‐bulk density, 1.90 to [Formula: see text]; fractional porosity, 0.46 to 0.14; carbonate content, 34 to 88 percent; compressional‐wave velocity (at 0.1 kbar), 1.87 to 4.87 km/sec; anisotropy, 1 to 13 percent. Velocities were measured in three mutually perpendicular directions through the same specimen in 29 of the 40 samples studied. Calcite fabric has been estimated by x‐ray pole figure goniometry. The major findings of this study are. (1) Carbonate‐bearing deep‐sea sediments may be regarded as transversely isotropic media with symmetry axes normal to bedding. (2) Calcite c‐axes are weakly concentrated in a direction perpendicular to bedding, but the preferred orientation of calcite does not contribute significantly to velocity anisotropy. (3) The properties of bedded and unbedded samples are distinctly different. Unbedded sediments exhibit low degrees of acoustic anisotropy (1 to 5 percent). By contrast, bedded samples show higher degrees of anisotropy (to 13 percent), and anisotropy increases markedly with depth of burial. Thus, bedding must be regarded as the principal cause of acoustic anisotropy in calcareous, deep‐sea sediments.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3