Azimuthal variation inP-wave signatures due to fluid flow

Author:

MacBeth Colin1

Affiliation:

1. British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, Scotland, United Kingdom.

Abstract

The favored dominant mechanism for attenuation in the upper crust at seismic frequencies is intracrack fluid flow. In cracked media, the azimuthal attenuation of the P-wave amplitudes arising from such flow is predicted to be quite substantial. The consequence of this variation in azimuth is a modification in the amplitude behavior of the base event from a cracked reservoir due to transmission through the attenuative layer. Indeed, the effect is of sufficient strength to exacerbate, diminish, or reverse variations that arise solely due to the reflectivity coefficient. Thus, although this attenuation is always greatest perpendicular to the crack strike, the direction of the dimming or brightening of the base reservoir event will depend upon the exact attenuation law and the crack properties. The combination of these factors contributes to a wave behavior that can provide a more adequate discrimination between conditions of brine and oil fill than an interpretation assuming the reflection coefficient alone. Unfortunately, regions of commonality do remain, and the distinction between fills is still only apparent for particular reservoir and crack conditions. The attenuated amplitudes are large enough to be seen at small offsets and may possibly account for the significant azimuthal variations in the P-wave signatures observed in field data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3