Moveout inversion ofP-wave data for horizontal transverse isotropy

Author:

Contreras Pedro1,Grechka Vladimir2,Tsvankin Ilya2

Affiliation:

1. Intevep-PDVSA, P.O. Box 76343, Caracas 1070A DF, Venezuela.

2. Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, Golden, Colorado 80401. Emails:

Abstract

The transversely isotropic model with a horizontal symmetry axis (HTI media) has been extensively used in seismological studies of fractured reservoirs. In this paper, a parameter‐estimation technique originally developed by Grechka and Tsvankin for the more general orthorhombic media is applied to horizontal transverse isotropy. Our methodology is based on the inversion of azimuthally‐dependent P-wave normal‐moveout (NMO) velocities from horizontal and dipping reflectors. If the NMO velocity of a given reflection event is plotted in each azimuthal direction, it forms an ellipse determined by three combinations of medium parameters. The NMO ellipse from a horizontal reflector in HTI media can be inverted for the azimuth β of the symmetry axis, the vertical velocity [Formula: see text], and the Thomsen‐type anisotropic parameter δ(V). We describe a technique for obtaining the remaining (for P-waves) anisotropic parameter η(V)(or ε(V)) from the NMO ellipse corresponding to a dipping reflector of arbitrary azimuth. The interval parameters of vertically inhomogeneous HTI media are recovered using the generalized Dix equation that operates with NMO ellipses for horizontal and dipping events. High accuracy of our method is confirmed by inverting a synthetic multiazimuth P-wave data set generated by ray tracing for a layered HTI medium with depth‐varying orientation of the symmetry axis. Although estimation of η(V)can be carried out by the algorithm developed for orthorhombic media, for more stable results the HTI model has to be used from the outset of the inversion procedure. It should be emphasized that P-wave conventional‐spread moveout data provide enough information to distinguish between HTI and lower‐symmetry models. We show that if the medium has the orthorhombic symmetry and is sufficiently different from HTI, the best‐fit HTI model cannot match the NMO ellipses for both a horizontal and a dipping event. The anisotropic coefficients responsible for P-wave moveout can be combined to estimate the crack density and predict whether the cracks are fluid‐filled or dry. A unique feature of the HTI model that distinguishes it from both vertical transverse isotropy and orthorhombic media is that moveout inversion provides not just zero‐dip NMO velocities and anisotropic coefficients, but also the true vertical velocity. As a result, reflection P-wave data acquired over HTI formations can be used to build velocity models in depth and perform anisotropic depth processing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3