Pre-stack seismic inversion using SeisInv-ResNet
Author:
Affiliation:
1. China University of Petroleum (East China)
2. Sinopec Research Institute
3. China Petroleum Logging CO.LTD.
Publisher
Society of Exploration Geophysicists
Link
https://library.seg.org/doi/pdf/10.1190/segam2019-3215750.1
Reference16 articles.
1. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set
2. Cao, D., P. An, and S. Liu, 2018, Elastic-parameters inversion from EI based on the deep-learning method: 88th Annual International Meeting, SEG, Expanded Abstracts, 640–644, doi: 10.1190/segam2018-2998479.1.
3. Chopra, S., and K. J. Marfurt, 2018, Seismic facies classification using some unsupervised machine-learning methods: 88th Annual International Meeting, SEG, Expanded Abstracts, 2056–2060, doi: 10.1190/segam2018-2997356.1.
4. Das, V., A. Pollack, U. Wollner, and T. Mukerji, 2018, Convolutional neural network for seismic impedance inversion: 88th Annual International Meeting, SEG, Expanded Abstracts, 2071–2075, doi: 10.1190/segam2018-2994378.1.
5. Jin, L., 2018, Machine learning approaches for seismic facies prediction and reservoir property inversion: 88th Annual International Meeting, SEG, Expanded Abstracts, 2147–2151, doi: 10.1190/segam2018-2996374.1.
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multitask Weighted Adaptive Prestack Seismic Inversion;Applied Geophysics;2024-05-17
2. Synthetic-data-driven deep learning method for elastic parameter inversion;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14
3. A comprehensive review of seismic inversion based on neural networks;Earth Science Informatics;2023-08-28
4. Generating complete synthetic datasets for high‐resolution amplitude‐versus‐offset attributes deep learning inversion;Geophysical Prospecting;2023-05-15
5. Multichannel seismic impedance inversion based on Attention U-Net;Frontiers in Earth Science;2023-02-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3