Pressure-dependent joint elastic-electrical properties of calcite-cemented artificial sandstones

Author:

Han Tongcheng1ORCID,Wang Pan2ORCID,Fu Li-Yun3ORCID

Affiliation:

1. China University of Petroleum (East China), Shandong Provincial Key Laboratory of Deep Oil and Gas, Qingdao, China and Pilot National Laboratory for Marine Science and Technology (Qingdao), Laboratory for Marine Mineral Resources, Qingdao, China. (corresponding author)

2. China University of Petroleum (East China), Shandong Provincial Key Laboratory of Deep Oil and Gas, Qingdao, China.

3. China University of Petroleum (East China), Shandong Provincial Key Laboratory of Deep Oil and Gas, Qingdao, China and Pilot National Laboratory for Marine Science and Technology (Qingdao), Laboratory for Marine Mineral Resources, Qingdao, China.

Abstract

Understanding the correlations between the elastic and electrical properties of various types of rocks is the key to the successful joint interpretation of seismic and electromagnetic survey data to provide petrophysical parameters to better assess the subsurface earth. However, the pressure-dependent joint elastic-electrical properties of calcite-cemented sandstones remain poorly understood, even though such rocks are widely distributed in nature and are all experiencing pressures. To obtain such knowledge, a new method has been developed for the manufacture of calcite-cemented artificial sandstones and investigated comprehensively the effects of porosity and cementation content on the confining pressure-dependent joint elastic-electrical properties of the synthetic samples made using the new recipe. Confining pressure is found to more significantly affect the P- and S-wave velocities and electrical resistivity in the samples with higher and lower porosity, respectively, when their cementation content remains the same. On the other hand, cementation content impacts the pressure-dependent elastic and electrical properties more complexly, and the effects of cementation content can be influenced by the minor fluctuation of porosity in the samples, especially at low confining pressures. More interestingly, P- and S-wave velocities are found to approximately linearly correlate with electrical resistivity as confining pressure varies, and the slopes of the linear joint correlations are demonstrated to vary distinctly with porosity and cementation content. The experimental data are interpreted in terms of the competing effects of porosity and cementation content on the microstructure of the samples. The results have helped to reveal the nature that porosity and cementation content find on affecting the joint elastic-electrical properties with varying pressure and have important practical implications for discriminating the porosity and cementation effects that will pave the way to a more successful interpretation of the joint seismic and electromagnetic survey data.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3