Wave propagation in thermo-poroelasticity: A finite-element approach

Author:

Santos Juan Enrique1,Carcion José Mario2,Savioli Gabriela Beatriz3ORCID,Ba Jing4ORCID

Affiliation:

1. Hohai University, School of Earth Sciences and Engineering, Nanjing, China; Universidad de Buenos Aires, Instituto del Gas y del Petróleo, Facultad de Ingeniería, Buenos Aires, Argentina; and Purdue University, Department of Mathematics, West Lafayette, Indiana, USA.

2. Hohai University, School of Earth Sciences and Engineering, Nanjing, China and OGS, Associate of National Institute of Oceanography and Applied Geophysics, Sgonico (TS), Italy.

3. Universidad de Buenos Aires, Instituto del Gas y del Petróleo, Facultad de Ingeniería, Buenos Aires, Argentina.

4. Hohai University, School of Earth Sciences and Engineering, Nanjing, China. (corresponding author).

Abstract

We have developed continuous and discrete-time finite-element (FE) methods to solve an initial boundary-value problem for the thermo-poroelasticity wave equation based on the combined Biot/Lord-Shulman (LS) theories to describe the porous and thermal effects, respectively. In particular, the LS model, which includes a Maxwell-Vernotte-Cattaneo relaxation term, leads to a hyperbolic heat equation, thus avoiding infinite signal velocities. The FE methods are formulated on a bounded domain with absorbing boundary conditions at the artificial boundaries. The dynamical equations predict four propagation modes, a fast P (P1) wave, a Biot slow (P2) wave, a thermal (T) wave, and a shear (S) wave. The spatial discretization uses globally continuous bilinear polynomials to represent solid displacements and temperature, whereas the vector part of the Raviart-Thomas-Nedelec of zero order is used to represent fluid displacements. First, a priori optimal error estimates are derived for the continuous-time FE method, and then an explicit conditionally stable discrete-time FE method is defined and analyzed. The explicit FE algorithm is implemented in one dimension to analyze the behavior of the P1, P2, and T waves. The algorithms can be useful for a better understanding of seismic waves in hydrocarbon reservoirs and crustal rocks, whose description is mainly based on the assumption of isothermal wave propagation.

Funder

Universidad de Buenos Aires

ANPCyT, Argentina

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical experiments to characterize P-wave attenuation in partially saturated non-isothermal porous media;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

2. A space-time multigrid method for poroelasticity equations with random hydraulic conductivity;Numerical Heat Transfer, Part B: Fundamentals;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3