Frequency adaptive fault detection by feature pyramid network with wavelet transform

Author:

Zhou Ruoshui1ORCID,Zhou Cheng1ORCID,Wang Yaojun1ORCID,Yao Xingmiao1ORCID,Hu Guangmin1ORCID,Yu Fucai2ORCID

Affiliation:

1. University of Electronic Science and Technology of China (UESTC), School of Resources and Environment and Center for Information Geoscience, Chengdu, China.

2. University of Electronic Science and Technology of China (UESTC), School of Resources and Environment and Center for Information Geoscience, Chengdu, China. (corresponding author)

Abstract

Fault detection is a key step in seismic structure interpretation. Current research has achieved good results in fault detection by using synthetic training data to train deep-learning models. However, there is an inevitable difference in frequency bandwidth between synthetic training data and real seismic data, which makes it difficult for deep-learning models to obtain ideal fault detection results on real seismic data. To solve this problem, the feature pyramid network (FPN) is introduced to obtain multiscale deep-learning features, which can reduce the impact of seismic data frequency bandwidth differences on fault detection. Then, we apply the multiscale wavelet transform to extract multiscale frequency spectral features of the seismic data and combine them with the multiscale deep-learning features through concatenation operation. Furthermore, the seismic data is decomposed into signals with different frequency bands through the wavelet transform, and we use the energy of these signals as the network weights of multiscale mixed features to further improve the frequency adaptability of our method. Based on these works, we not only improve the fault detection effect in a specific work area but also improve the generalization ability of the deep-learning model in different work areas, thus further promoting the application of deep learning in actual production. Compared with the fault detection results by the traditional deep-learning model U-Net and the traditional FPN on multiple real seismic data and synthetic seismic data, experimental results demonstrate the effectiveness of our method.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3