Iterative geostatistical seismic inversion with rock-physics constraints for permeability prediction

Author:

Miele Roberto1ORCID,Grana Dario2ORCID,Seabra Varella Luiz Eduardo3ORCID,Viola Barreto Bernardo3,Azevedo Leonardo4ORCID

Affiliation:

1. Universidade de Lisboa, CERENA, DER, Instituto Superior Técnico, Lisboa, Portugal. (corresponding author)

2. University of Wyoming, Department of Geology and Geophysics, School of Energy Resources, Laramie, Wyoming, USA.

3. PETROBRAS — EXP/GEO/TGEO, Rio de Janeiro, Brazil.

4. Universidade de Lisboa, CERENA, DER, Instituto Superior Técnico, Lisboa, Portugal.

Abstract

Accurate prediction of the spatial distribution of subsurface permeability is a fundamental task in reservoir characterization and monitoring studies for hydrocarbon production and CO2geologic storage. Predicting permeability over large areas is challenging, due to their high variability and spatial anisotropy. Common approaches for modeling permeability generally involve deterministic calculations from porosity using precalibrated rock-physics models (RPMs) or geostatistical cosimulation methods that reproduce observed experimental porosity-permeability relationships. Instead, we have predicted permeability from seismic data using an iterative geostatistical seismic inversion method that combines the advantages of rock-physics and geostatistical modeling methods. First, we simulate facies through 1D vertical Markov chain simulations. Then, permeability, porosity, and acoustic impedance are sequentially generated and conditioned to the previously simulated facies model. An RPM is used to evaluate the misfit between the permeability predictions obtained from geostatistical cosimulation at the well locations and well-log values computed from the acoustic impedance. The residuals of the misfit function are used as conditioning constraints in the stochastic update of the models in the subsequent iteration. The outcome of our methodology is a set of multiple geostatistical realizations of facies, permeability, porosity, and acoustic impedance conditioned to seismic data and constrained by an RPM. We first illustrate the method on a synthetic 1D example and compare it to a traditional geostatistical inversion approach. We then apply our inversion to a 3D real data set to assess the methodology performance with scarce conditioning data and in the presence of noise.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3