Trace-wise coherent noise suppression via a self-supervised blind-trace deep-learning scheme

Author:

Liu Sixiu1ORCID,Birnie Claire2ORCID,Alkhalifah Tariq2ORCID

Affiliation:

1. King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. (corresponding author)

2. King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Abstract

Seismic data denoising via supervised deep learning is effective and popular but requires noise-free labels, which are rarely available. Blind-spot networks circumvent this requirement by training directly on noisy data and have been demonstrated to be a powerful suppressor of random noise. In this work, we expand the methodology of blind-spot networks to create a blind-trace network that successfully removes trace-wise coherent noise. An extensive synthetic analysis illustrates the denoising procedure’s robustness to varying noise levels and varying numbers of noisy traces within shot gathers. It is demonstrated that the network can accurately learn to suppress the noise when up to 60% of the original traces are noisy. Furthermore, our procedure is implemented on the Stratton 3D field data set and demonstrates the restoration of the previously corrupted direct arrivals. In addition to trace-wise noise suppression, we adapt the blind-spot networks to the successful suppression of colored Gaussian noise, which exhibits varying coherent properties in time and spatial axes. Our adaptation of the blind-spot networks paves the way for its use in other applications, such as the suppression of coherent noise arising from wellsite activity, passing vessels, or nearby industrial activity.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3