Applications and limitations of distributed acoustic sensing in shallow seismic surveys and monitoring

Author:

Abukrat Yarin1ORCID,Sinitsyn Pavel2,Reshef Moshe2ORCID,Lellouch Ariel2ORCID

Affiliation:

1. Tel Aviv University, Department of Geophysics, Tel Aviv, Israel. (corresponding author)

2. Tel Aviv University, Department of Geophysics, Tel Aviv, Israel.

Abstract

Distributed acoustic sensing (DAS) is an emerging technology gaining acceptance in a variety of seismological applications. We systematically analyze the adaptability and usefulness of horizontal DAS deployments for near-surface geophysical applications, such as surface wave inversion, diving wave tomography, and passive subsurface source location. We find that, in accordance with previous studies, DAS data are generally similar to traditional sensors and can be successfully used independently. Nonetheless, DAS data suffer from inherent limitations due to the design of the optical measurement system. Among others, we identify the gauge length, measurement directivity, and saturation at near offsets as the primary limiting factors. When operating in low-velocity environments and a standard 10 m gauge length, surface wave analysis may be constrained to the usage of low frequencies due to the wavenumber filtering effect of the gauge length. The measurement directivity generally prohibits applications that are based on upgoing P-wave energy, such as near-offset diving wave tomography. In addition, saturation at near offsets prevents reliable diving wave traveltime picking. As a consequence of these limitations, the ultrashallow resolution achievable with DAS data is poor. Source directivity also strongly limits passive source location resolution. Whereas some of the limitations can be alleviated through an optimal choice of optical parameters at the interrogator level, we mostly rely on adapted field acquisition and data processing workflows that use the undisturbed portion of the recorded signal. Eventually, the spatiotemporal resolution and relative ease of long-term deployments turn DAS into a worthwhile option for monitoring and time-lapse scenarios, or when operating in urban environments over existing infrastructure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3