Dynamic elastic properties of coal

Author:

Morcote Anyela123,Mavko Gary123,Prasad Manika123

Affiliation:

1. Formerly at Stanford University, Stanford, California, U.S.A.; presently at OHM-Rock Solid Images, Houston, Texas, U.S.A. .

2. Stanford University, Department of Geophysics, Stanford Rock Physics Laboratory, Stanford, California, U.S.A. .

3. Colorado School of Mines, Center for Rock Abuse, Department of Petroleum, Engineering, Golden, Colorado, U.S.A. .

Abstract

Laboratory ultrasonic velocity measurements of different types of coal demonstrate that their dynamic elastic properties depend on coal rank and applied effective pressure. In spite of the growing interest in coal beds as targets for methane production, the high abundance in sedimentary sequences and the strong influence that they have on seismic response, little data are available on the acoustic properties of coal. Velocities were measured in core plugs parallel and perpendicular to lamination surfaces as a function of confining pressure up to [Formula: see text] in loading and unloading cycles. P- and S-wave velocities and dry bulk and dry shear moduli increase as coal rank increases. Thus, bituminous coal and cannel show lower velocities and moduli than higher ranked coals such as semianthracite and anthracite. The [Formula: see text] relationship for dry samples is linear and covers a relatively wide range of effective pressures and coal ranks. However, there is a pressure dependence on the elastic properties of coal for confining pressures below [Formula: see text]. This pressure sensitivity is related to the presence of microcracks. Finally, the data show that coal has an intrinsic anisotropy at confining pressures above [Formula: see text], the closing pressure for most of the microcracks. This intrinsic anisotropy at high pressures might be due to fine lamination and preferred orientation of the macerals.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3