Seismic critical-angle reflectometry: A method to characterize azimuthal anisotropy?

Author:

Landrø Martin12,Tsvankin Ilya12

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway. .

2. Colorado School of Mines, Center for Wave Phenomena, Department of Geophysics, Golden, Colorado. .

Abstract

Existing anisotropic parameter-estimation algorithms that operate with long-offset data are based on the inversion of either nonhyperbolic moveout or wide-angle amplitude-variation-with-offset (AVO) response. We show that valuable information about anisotropic reservoirs can also be obtained from the critical angle of reflected waves. To explain the behavior of the critical angle, we develop weak-anisotropy approximations for vertical transverse isotropy and then use Tsvankin’s notation to extend them to azimuthally anisotropic models of orthorhombic symmetry. The P-wave critical-angle reflection in orthorhombic media is particularly sensitive to the parameters [Formula: see text] and [Formula: see text] responsible for the symmetry-plane horizontal velocity in the high-velocity layer. The azimuthal variation of the critical angle for typical orthorhombic models can reach [Formula: see text], which translates into substantial changes in the critical offset of the reflected P-wave. The main diagnostic features of the critical-angle reflection employed in our method include the rapid amplitude increase at the critical angle and the subsequent separation of the head wave. Analysis of exact synthetic seismograms, generated with the reflectivity method, confirms that the azimuthal variation of the critical offset is detectable on wide-azimuth, long-spread data and can be qualitatively described by our linearized equations. Estimation of the critical offset from the amplitude curve of the reflected wave, however, is not straightforward. Additional complications may be caused by the overburden noise train and by the influence of errors in the overburden velocity model on the computation of the critical angle. Still, critical-angle reflectometry should help to constrain the dominant fracture directions and can be combined with other methods to reduce the uncertainty in the estimated anisotropy parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3